П о д з е м н ы е в о д ы являются важнейшим элементом инженерно-геологических условий той или иной территории. При проектировании и строительстве сооружений, рациональном использовании территорий, геологической среды подземные воды всегда имеют не только инженерно-геологическое значение. Поэтому столь необходимо изучить подземные воды – их распространение, условия залегания, гидравлические особенности, условия питания и разгрузки, запасы (ресурсы), режим и т.д. Стационарные наблюдения проводят на стадии проведенья инженерно-геологической съемки и разведки для изучения:
– положения уровня подземных вод;
– условий питания подземных вод и их запасов (ресурсов);
– связи подземных вод с поверхностными водами и зависимости режима первых от режима вторых;
– взаимосвязи между отдельными горизонтами и зонами подземных вод, наличия и надежности водоупоров как локальных, так и региональных;
– изменений режима подземных вод (уровней, ресурсов, химизма и др.) под влиянием существующих водоупоров, эксплуатации сооружений и других факторов;
– влияния режима подземных вод на развитие геологических процессов и явлений (подтопление и заболачивание территорий, засоление горных пород, развитие оползневых и просадочных явлений, изменение микросейсмических условий и др.).
Глубину залегания у р о в н я п о д з е м н ы х в о д определяют с помощью специальных приспособлений (рис. 2.2). Для проведения химического анализа воды в лабораторных условиях из скважин отбирают ее пробы, причем с разных глубин.
Глубина и мощность водоносного безнапорного пласта определяются замерами расстояний от устья скважины до зеркала водоносного горизонта и от зеркала подземных вод до кровли водоупорного пласта. В напорном водоносном пласте мощность горизонта определяется расстоянием между верхним и нижним водоупорами.
а) б)
Рис. 2.1. Средства для замера уровня подземных вод
а – хлопушка; б – свисток.
Получаемые сведения дают возможность: обоснованно оценивать инженерно-геологические условия территории; определять условия производства строительных и горных работ, условия эксплуатации сооружений, агрессивное воздействие вод на подземные части конструкций сооружений и т.п.; разрабатывать мероприятия по борьбе с подтоплением территорий, с водопритоками при проходке котлованов и подземных выработок и т.п.; разрабатывать мероприятия по охране окружающей геологической среды.
И з у ч е н и е ф и з и к о-г е о л о г и ч е с к и х п р о ц е с – с о в.
Основная цель изучения физико-геологических процессов и явлений состоит в оценке степени их влияния и в выборе способов борьбы с их неблагоприятным воздействием на проектируемые сооружения. Для достижения этой цели должны быть изучены условия и закономерности развития процессов и явлений, т.е. выявлены их типы и приуроченность этих типов к определенным видам грунтов, элементам и формам рельефа, гидрогеологическим и криогенным условиям.
На формирование и развитие физико-геологических процессов и явлений обычно оказывает влияние нескольких природных факторов. Часть из них создает условия для их возникновения, часть способствует активизации их развития. Среди этих факторов определяющими являются геологические и климатические, взаимодействие которых и определяет тип процесса и характер его проявления. Ниже перечисленные физико-геологические процессы и явления не охватывают всего их многообразия, а приведены как наиболее часто встречающиеся. Это: элювиообразование, промерзание и оттаивание, обвалы и осыпи, лавины, оползни, наледи и надледные бугры, явления развевания и навевания, солифлюкция, эрозия почв, подмыв берегов, оврагообразование, размыв склонов, сели, абразия озерная и морская, затопление и подтопление, заиление водохранилищ, суффозионные и фильтрационные деформации поверхности, карстовые явления, сейсмические явления, горное давление, просадки в лессовидных породах и лессах, явление усадки, сдвижение горных пород на подрабатываемых территориях и др.
Расчет по раскрытию трещин, нормальных к продольной оси
при γsp=1. Предельная ширина раскрытия трещин: непродолжительная aсгс=[0.4 мм], продолжительная aсгс=[0,3 мм] (см. табл. П. 2). Изгибающие моменты от нормативных нагрузок: постоянной и длительной М=74,24 кНм; суммарной М=110,74 кНм. Приращение напряжений в растянутой арматуре от действия постоянной и д ...
Определение величины равнодействующей вертикальной силы в уровне нижних
концов свай (Nус) и вертикального давления в уровне
подошвы условного массивного свайного ф-та (Рус)
Рус =
Nус = Fv + Fvp + Fvc + Fvгр
Fv =810 кН
Fvp = 17,6 кН
Fvc = 77,76 кН
Fvгр = γср · Vгр = 9,799· 88,65 = 868,68кН
γср =
если грунт расположен ниже WL и водопроницаемый (пески, супеси и суглинки c JL>0,25; и глины с JL>0,5), то вместо γо принимается в расчёте γср = γ ...
Геометрические размеры элементов стропил
При :
Откуда высота стропил:
Длина стропильной ноги:
(3.1)
Длина подкоса:
(3.2)
Длина верхнего отрезка стропильной ноги:
(3.3)
Для нижнего отрезка стропильной ноги:
(3.4)
...