Здания относятся к категории объектов, аварийное состояние которых может вызвать непредсказуемые катастрофические последствия. Поэтому на каждом таком здании должна быть реализована комплексная система безопасности.
Одним из важнейших элементов этой системы являются меры по предупреждению повреждения здания под воздействием природно-техногенных нагрузок: промышленной динамики, ветровых воздействий, изменений в грунтах и основаниях и др.
Важнейшей проблемой безопасной эксплуатации зданий является контроль напряженно-деформированного состояния их несущих конструкций.
Обеспечение системности обследования технического состояния - обязательное условие адекватности оценки объектов недвижимости.
Но независимо от побудительного мотива, работа оценщика невозможна без наличия сведений о фактическом техническом состоянии объекта, в том числе его конструктивных элементов, узлов и инженерных систем, составляющих содержание материалов натурного обследования, выполняемого в соответствии с требованиями действующих на момент обследования нормативных и методических документов.
Традиционно техническое состояние здания принято определять степенью износа (физический, функциональный, внешний).
При этом следует учитывать, что на уровень технического состояния оказывают влияние изменение условий эксплуатации, функционального назначения сооружения, нормативных требований.
Особую группу составляют объекты, находящиеся на стадии незавершенного строительства, длительное время не эксплуатирующиеся, "законсервированные" и т.п. Степень незавершенности и сроки простоя обусловливают фактическое состояние конструкций (наличие и степень повреждений, отступлений от проектных решений, возможно допущенных при строительстве, эксплуатации, ремонте или реконструкции), необходимость работ по их восстановлению, укреплению или замене.
Заключительным документом, обобщающим результаты выполненных работ, является заключение (отчет) эксперта о техническом состоянии объекта.
Таким образом, заключение о техническом состоянии объекта является базовым документом, позволяющим оценить фактическую стоимость объекта, целесообразность или возможность проведения ремонтно-восстановительных и реконструктивных работ, оценить страховой риск.
Расчет осадки основания свайного фундамента
Определяем размеры и вес условного фундамента (по указаниям п. 7.1. СНиП 2.02.03–85*).
=(20×3,25+19×1,20+35×1,40)/(3,25+1,20+1,40)=230.
Размеры свайного поля по наружному обводу:
l=2×1,25+0,3=2,8 м.,
b=2×0,625+0,3=1,6 м.
Размеры площади подошвы условного массива:
lусл = ...
Крепление опорного столика.
Принимаем толщину опорного столика 16 мм.
Катет сварного шва: kf = 8 мм.
Необходимая длина сварного шва:
lw=N/(kf×Rwz ×bz )=458.6×103/(0.008×165×106×1.05)=0.325 м.
Ширина полки двутавра верхней части колонны 32 см, исходя из этого, размеры опорного столика равны: 180х ...
Определяются нагрузки на внутреннюю стену по оси В
Грузовая площадь (1,31 + 2,395) х 1 = 3,72 м2
Нагрузки на фундамент на уровне ↓ -1,64 м от отметки чистого пола:
– постоянные нагрузки от конструкций:
– покрытия 2,39 х 3,72 = 8,89;
– перекрытия 2,5 х 3,72 = 9,3;
– междуэтажного перекрытия 4,36 х 3,72 = 16,22;
– стены выше плиты перекрытия 2,7 х ...