Цель аэродинамического расчета систем механической вентиляции подобрать по допустимым скоростям движения воздуха размеры воздуховодов, определить потери давления в системе и по потерям давления и количеству воздуха подобрать вентилятор.
Расчет выполняем по методу удельных потерь давления, результаты расчетов заносим в таблицы.
Порядок расчета:
1)Выбираем основную расчетную ветвь – это самая удаленная и нагруженная ветвь.
2)Определяем расходы воздуха и длины для каждого участка.
3)Определяем сечение канала. Для этого рассчитываем ориентировочную площадь поперечного сечения:
,
Где
расход воздуха на участке, м3/ч;
рекомендуемая скорость движения воздуха:
в ответвлении до 5 м/с;
по магистрали 4-8 м/с.
По величине
подбираем стандартные размеры воздуховодов [9, табл.12.1 – 12.12], таким образом чтобы
.
4)Для расчета потерь давления на трение
и в местных сопротивлениях Z определяем фактическую скорость движения воздуха в каналах, м/с:
.
5)Определяем потери давления на трение. Таблицы и номограммы для определения потерь давления на трение и в местных сопротивлениях составлены для круглых стальных воздуховодов, поэтому для прямоугольных воздуховодов значения
и Z определяются по эквивалентному диаметру:
,
где
ширина воздуховода;
высота воздуховода.
Если воздуховоды изготовлены не из стали (т.е. имеют другой коэффициент шероховатости), то при расчете
вводится поправка на шероховатость [9, табл. 12.14].
Определяем потери давления на трение на расчетном участке длиной l:
,
Где
удельные потери давления на 1 м стального воздуховода, Па/м [9, табл. 12.17];
коэффициент шероховатости, для стальных воздуховодов
.
6) Определяем потери давления в местных сопротивлениях:
,
Где
сумма коэффициентов местных сопротивлений на расчетном участке [9, табл. 12.18 – 12.49];
скоростное давление, Па [9, табл. 12.17].
7)Определяем полные потери давления на расчетном участке, Па:
.
8)Определяем полные потери давления основной расчетной ветви, Па:
После определения потерь давления в расчетной ветви производим увязку ответвлений. Выбираем ответвление, разбиваем на участки и рассчитываем в той же последовательности, что и магистральную ветвь. Потери давления в увязанном ответвлении должны быть равны потерям давления в параллельных ответвлению участках расчетной ветви. Допускается невязка 10%.
При больших значениях невязки устанавливают диафрагму, в зависимости от величины избыточного давления, которое нужно погасить. Для этого определяют коэффициент местного сопротивления диафрагмы по формуле:
Затем по [9, табл. 12.52] определяем
диафрагмы.
Расчет сводим в таблицу
Таблица - Аэродинамический расчёт воздуховодов механической приточной системы вентиляции
|
Номер участка |
Количество воздуха Lр, м3/ч |
Длина участка l, м |
Размеры воздуховодов |
Скорость воздуха Vд, м/с |
Потери давления на трение |
Потери давления в местных сопротивлениях |
Общие потери давления на участке Rуд∙ βш∙l + Z, Па |
Суммарные потери давления на участках от начала сети ∑i (Rуд∙ βш∙l + Z)i , Па | ||||||
|
F, м2 |
a×b, мм |
Dэ=2∙a∙b/(a+b), мм |
Rуд, Па/м |
Коэф-т шероховат-ти βш |
Rуд∙ βш∙l, Па |
Скоростное давление Рд = V2∙ρ/2, Па |
Сумма коэф-тов местных сопротивлений ∑ξi |
Потери давления на местные сопротивления Z, Па | ||||||
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
П2. Главная расчетная ветвь | ||||||||||||||
|
1 |
353 |
7,7 |
0,025 |
100×250 |
140 |
3,9 |
1,65 |
1 |
12,7 |
9,3 |
2,1 |
19,53 |
32,2 |
32,2 |
|
2 |
618 |
8,6 |
0,0375 |
150×250 |
180 |
4,6 |
1,63 |
1 |
14,02 |
12,9 |
1,1 |
14,19 |
28,1 |
60,3 |
|
3 |
959 |
0,8 |
0,04 |
200×200 |
200 |
6,7 |
2,84 |
1 |
2,27 |
27,5 |
1,9 |
52,25 |
54,5 |
114,8 |
|
4 |
1634 |
2,7 |
0,06 |
200×300 |
250 |
7,1 |
2,4 |
1 |
6,48 |
30,8 |
0 |
0 |
6,5 |
121,3 |
|
5 |
3281 |
15,6 |
0,125 |
250×500 |
315 |
7,1 |
1,79 |
1 |
27,92 |
30,8 |
1,2 |
36,96 |
64,9 |
186,2 |
|
6 |
3889 |
7,6 |
0,15 |
250×600 |
355 |
7 |
1,55 |
1 |
11,48 |
30 |
6,6 |
198 |
209,5 |
395,7 |
|
Ответвления | ||||||||||||||
|
7 |
265 |
0,5 |
0,025 |
100×250 |
140 |
2,9 |
0,96 |
1 |
0,48 |
5,14 |
5,2 |
26,73 |
27,2 |
27,2 |
|
8 |
90 |
6 |
0,02 |
100×200 |
140 |
1,3 |
0,23 |
1 |
1,38 |
1,03 |
11,6 |
11,95 |
13,3 |
13,3 |
|
9 |
213 |
0,2 |
0,015 |
100×150 |
125 |
3,9 |
1,9 |
1 |
0,38 |
9,3 |
1,7 |
15,81 |
16,2 |
16,2 |
|
10 |
303 |
6,4 |
0,02 |
100×200 |
140 |
4,2 |
1,88 |
1 |
12,03 |
10,8 |
0,4 |
4,32 |
16,4 |
16,4 |
|
11 |
47 |
1 |
0,01 |
100×100 |
100 |
1,3 |
0,35 |
1 |
0,35 |
1,03 |
11,7 |
12,05 |
12,4 |
12,4 |
|
12 |
350 |
2,3 |
0,02 |
100×200 |
140 |
4,9 |
2,5 |
1 |
5,75 |
14,7 |
3,2 |
47,04 |
52,8 |
52,8 |
|
13 |
173 |
2 |
0,015 |
100×150 |
125 |
3,2 |
1,32 |
1 |
2,64 |
6,26 |
3,7 |
23,16 |
25,8 |
25,8 |
|
14 |
122 |
0,2 |
0,015 |
100×150 |
125 |
2,3 |
0,73 |
1 |
0,15 |
3,24 |
7,5 |
22,72 |
24,5 |
24,5 |
|
15 |
295 |
2,9 |
0,02 |
100×200 |
140 |
4,1 |
1,8 |
1 |
5,22 |
10,3 |
2,2 |
22,66 |
27,9 |
27,9 |
|
16 |
380 |
6,2 |
0,0225 |
150×150 |
160 |
4,7 |
1,96 |
1 |
12,15 |
13,5 |
1,2 |
16,2 |
28,4 |
28,4 |
Режим теплопотребления
Отопительный период
Таблица 1
Вид нагрузки
Тепловые нагрузки по ТУ, Гкал/ч
Расход сетевой воды, м3/ч
Расчетное значение
Отопление
0,09300
1,162
ГВС среднесуточная
-
-
ГВС максимальная
-
-
Всего:
0,09300
1,162
Летний период
Таблица 2
Вид на ...
Построение эпюр усилий в ригеле
Сначала вычисляем эпюрные моменты от четырех элементарных загружений
1. нагрузка g распределенная по всем трем пролетам;
2. нагрузка v, приложенная в первом и третьем, считая слева, пролетах рамы;
3. то же, во втором пролете;
4. то же в первом и втором пролетах.
Для схемы 1 вычислим М12
Отношение пого ...
Расчет осадки фундамента
Сначала слева от оси фундамента строится эпюра szgi (кПа) от собственного веса грунта (бытового давления) на уровне подошвы фундамента (szg0),затем на границе каждого слоя, на границе УГВ- нарастающим итогом: (szgi =szgо + Syi*hi), где yi -удельный вес каждого слоя грунта выше УГВ или водонепроницаемого гру ...