В системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием естественного давления
, возникающего вследствие разности давлений холодного наружного и теплого внутреннего воздуха, Па:
,
Где
высота воздушного столба, принимаемая от центра вытяжной решетки до устья шахты, м;
плотность наружного (при
) и внутреннего (при
) воздуха,
.
.
За расчётную ветвь в системах естественной вентиляции принимают самую удалённую ветвь, имеющую наименьшее располагаемое гравитационное давление. Как правило, это ветвь, по которой удаляется воздух с верхнего этажа.
Расчет воздуховодов систем естественной вентиляции аналогичен расчету систем механической вентиляции. Расчет сведен в таблицу.
Таблица 8.1 - Аэродинамический расчёт воздуховодов естественной приточной системы вентиляции
|
Номер участка |
Количество воздуха Lр, м3/ч |
Длина участка l, м |
Размеры воздуховодов |
Скорость воздуха Vд, м/с |
Потери давления на трение |
Потери давления в местных сопротивлениях |
Общие потери давления на участке Rуд∙ βш∙l + Z, Па |
Суммарные потери давления на участках от начала сети ∑i (Rуд∙ βш∙l + Z)i , Па | ||||||
|
F, м2 |
a×b, мм |
Dэ=2∙a∙b/(a+b), мм |
Rуд, Па/м |
Коэф-т шероховат-ти βш |
Rуд∙ βш∙l, Па |
Скоростное давление Рд = V2∙ρ/2, Па |
Сумма коэф-тов местных сопротивлений ∑ξi |
Потери давления на местные сопротивления Z, Па | ||||||
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
1 |
100 |
0,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,046 |
0,3 |
2,2 |
0,66 |
0,71 |
0,71 |
|
2 |
100 |
0,5 |
0,033 |
150х220 |
180 |
0,8 |
0,07 |
1,19 |
0,042 |
0,4 |
1 |
0,4 |
0,44 |
1,15 |
|
3 |
200 |
0,3 |
0,048 |
150х320 |
200 |
1,2 |
0,13 |
1,25 |
0,049 |
0,88 |
1 |
0,88 |
0,93 |
2,08 |
|
4 |
400 |
3,8 |
0,073 |
270 х270 |
280 |
1,5 |
0,12 |
1,56 |
0,46 |
1,38 |
1 |
1,38 |
1,84 |
3,92 |
|
Ответвления | ||||||||||||||
|
5 |
100 |
3,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,279 |
0,3 |
2,2 |
0,66 |
0,94 |
0,94 |
|
6 |
100 |
0,5 |
0,033 |
150х220 |
180 |
0,8 |
0,07 |
1,19 |
0,042 |
0,4 |
1,1 |
0,44 |
0,48 |
0,48 |
|
7 |
100 |
0,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,046 |
0,3 |
2,1 |
0,63 |
0,68 |
0,68 |
|
8 |
200 |
0,3 |
0,048 |
150х320 |
200 |
1,2 |
0,13 |
1,25 |
0,049 |
0,88 |
1,1 |
0,97 |
1,02 |
1,02 |
|
9 |
100 |
3,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,279 |
0,3 |
2,1 |
0,63 |
0,91 |
0,91 |
Определение нагрузок
Все действующие нагрузки приводим к центру тяжести подошвы ростверка:
Ntot I = Ncol I + Gr I + Ggr I = 1572,22 + 251 = 1823 кН
Qtot I = Qcol I = 98,29 кН
Mtot I = Mcol I + Qtot I×Hr = 922,24 + 98,29 × 1,5 = 1070 кН×м ...
Проверка устойчивости плоской формы деформирования.
где,
lp = 150 см – расстояние между прогонами
для нагрузки приложенной в центре пролета по табл. 2 прил.4 [1]. ...
Размещение зданий в микрорайоне
Противопожарные требования.
Согласно п. 9., размещение и ориентация жилых и общественных зданий (за исключением детских садов, общеобразовательных школ) должны обеспечивать непрерывную продолжительность инсоляции жилых помещений и территории для зоны севернее 58 СШ – не менее 3 часов в день на период с 22 ...