В системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием естественного давления
, возникающего вследствие разности давлений холодного наружного и теплого внутреннего воздуха, Па:
,
Где
высота воздушного столба, принимаемая от центра вытяжной решетки до устья шахты, м;
плотность наружного (при
) и внутреннего (при
) воздуха,
.
.
За расчётную ветвь в системах естественной вентиляции принимают самую удалённую ветвь, имеющую наименьшее располагаемое гравитационное давление. Как правило, это ветвь, по которой удаляется воздух с верхнего этажа.
Расчет воздуховодов систем естественной вентиляции аналогичен расчету систем механической вентиляции. Расчет сведен в таблицу.
Таблица 8.1 - Аэродинамический расчёт воздуховодов естественной приточной системы вентиляции
|
Номер участка |
Количество воздуха Lр, м3/ч |
Длина участка l, м |
Размеры воздуховодов |
Скорость воздуха Vд, м/с |
Потери давления на трение |
Потери давления в местных сопротивлениях |
Общие потери давления на участке Rуд∙ βш∙l + Z, Па |
Суммарные потери давления на участках от начала сети ∑i (Rуд∙ βш∙l + Z)i , Па | ||||||
|
F, м2 |
a×b, мм |
Dэ=2∙a∙b/(a+b), мм |
Rуд, Па/м |
Коэф-т шероховат-ти βш |
Rуд∙ βш∙l, Па |
Скоростное давление Рд = V2∙ρ/2, Па |
Сумма коэф-тов местных сопротивлений ∑ξi |
Потери давления на местные сопротивления Z, Па | ||||||
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
1 |
100 |
0,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,046 |
0,3 |
2,2 |
0,66 |
0,71 |
0,71 |
|
2 |
100 |
0,5 |
0,033 |
150х220 |
180 |
0,8 |
0,07 |
1,19 |
0,042 |
0,4 |
1 |
0,4 |
0,44 |
1,15 |
|
3 |
200 |
0,3 |
0,048 |
150х320 |
200 |
1,2 |
0,13 |
1,25 |
0,049 |
0,88 |
1 |
0,88 |
0,93 |
2,08 |
|
4 |
400 |
3,8 |
0,073 |
270 х270 |
280 |
1,5 |
0,12 |
1,56 |
0,46 |
1,38 |
1 |
1,38 |
1,84 |
3,92 |
|
Ответвления | ||||||||||||||
|
5 |
100 |
3,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,279 |
0,3 |
2,2 |
0,66 |
0,94 |
0,94 |
|
6 |
100 |
0,5 |
0,033 |
150х220 |
180 |
0,8 |
0,07 |
1,19 |
0,042 |
0,4 |
1,1 |
0,44 |
0,48 |
0,48 |
|
7 |
100 |
0,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,046 |
0,3 |
2,1 |
0,63 |
0,68 |
0,68 |
|
8 |
200 |
0,3 |
0,048 |
150х320 |
200 |
1,2 |
0,13 |
1,25 |
0,049 |
0,88 |
1,1 |
0,97 |
1,02 |
1,02 |
|
9 |
100 |
3,6 |
0,038 |
140×270 |
180 |
0,7 |
0,06 |
1,29 |
0,279 |
0,3 |
2,1 |
0,63 |
0,91 |
0,91 |
Расчет стропильной системы. Исходные данные
Производится расчет насланных стропил подкосной системы под кровлю из металлочерепицы для здания с кирпичными стенами.
Данные для расчета:
- Пролет стропил l=15,3м;
- Расстояние между осями стропил
- Постоянная снеговая нагрузка
- Материал: осина
- Влажность 25%
- Расчетные сопротивления для осины: ...
Определение модуля деформации по результатам компрессионных испытаний
Строим графики зависимости е = f (p) для ИГЭ-2 и ИГЭ-3:
- Коэффициент сжимаемости:
, [кПа-1](10)
где: р1 = 100 кПа; е1,1=0,773; е1,2=0,842; е1,3=0,682.
р2 = 200 кПа; е2,1=0,734; е2,2=0,803; е2,3=0,664.
Для ИГЭ-1: (кПа-1).
Для ИГЭ-2: (кПа-1).
Для ИГЭ-3: (кПа-1).
- Коэффициент относительной сжимаемо ...
Фундамент
Фундамент
– это подземная или подводная часть сооружения, которая передает его грунтовому основанию, статическую нагрузку, создаваемую весом сооружения, и дополнительные статические нагрузки, создаваемые ветром, либо движением воды, людей, оборудования или транспорта. Правильно спроектированный фундамент п ...