Определение осадки фундамента, отдельностоящего, производим на основе использования расчётной схемы в виде линейно–деформированной среды и с применением метода послойного суммирования.
В соответствии с методом послойного суммирования осадка основания S определяется по формуле:
где β – коэффициент, равный 0,8;
hi – толщина i–го слоя грунта; hi=0,8<0,4∙2,4=0,96;
Еi – модуль деформации i-го слоя грунта;
σzpi – среднее значение вертикального давления в i-ом слое грунта, равно полусумме напряжений на верхней и нижней границе слоя по вертикали, проходящей через центр подошвы фундамента;
n – число слоёв грунта.
Дополнительные вертикальные давления на глубине zi от подошвы фундамента определяются по формуле:
σzp=α·Po,
где α – коэффициент (табл.1 прил.2 СНиП 2.02.01-83), в зависимости от
и
; P0 – превышение давления от внешней нагрузки над природным давлением от собственного веса грунта.
Рср – среднее давление под подошвой фундамента;
- вертикальное давление от собственного веса грунта на уровне подошвы фундамента.
σzp – дополнительное вертикальное давление на глубине z определяется по формуле:
где
при
Рис. 19. Расчетная схема фундамента при определении стабилизированной осадки по методу послойного суммирования.
Подсчитаем значение напряжений в пределах каждого слоя, результаты сведем в таблицу 7.
Таблица 7 Значения напряжений в элементарных слоях
|
№ |
zi, м |
hi |
γ кН/м³ |
γsw кН/м³ |
σzqi кПа |
ξ |
α |
σzpi кПа |
0,2σzqi кПа |
σzpi кПа |
Σσzpihi |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
0 |
- |
- |
- |
26,487 |
– |
– |
248,263 |
– |
– |
23,43 | |
|
1 |
0,1 |
0,1 |
17,658 |
- |
28,525 |
0,083 |
0,944 |
234,36 |
5,717 |
241,31 | |
|
2 |
0,7 |
0,6 |
17,658 |
- |
37,081 |
0,583 |
0,915 |
227,16 |
7,41 |
230,76 |
458,228 |
|
3 |
1,5 |
0,8 |
17,658 |
- |
51,207 |
1,25 |
0,682 |
169,31 |
10,24 |
198,23 | |
|
4 |
2,3 |
0,8 |
- |
9 |
66,119 |
1,916 |
0,439 |
108,98 |
13,22 |
139,14 | |
|
5 |
2,7 |
0,4 |
- |
9 |
73,375 |
2,25 |
0,360 |
89,37 |
14,67 |
99,17 | |
|
6 |
3,1 |
0,4 |
- |
9 |
81,031 |
2,583 |
0,230 |
57,1 |
16,20 |
73,23 | |
|
7 |
3,9 |
0,8 |
- |
9 |
95,943 |
3,25 |
0,205 |
50,89 |
19,18 |
53,99 | |
|
8 |
4,7 |
0,8 |
- |
10,37 |
104,23 |
3,92 |
0,151 |
37,48 |
20,84 |
44,18 |
70,49 |
|
9 |
5,5 |
0,8 |
- |
10,37 |
112,53 |
4,58 |
0,115 |
28,55 |
22,5 |
33,01 | |
|
10 |
6,3 |
0,8 |
- |
10,37 |
120,83 |
5,25 |
0,089 |
22,09 |
24,16 |
25,32 |
Исходные данные
Таблица 1
№ площадки
Вид грунта
Толщина слоев и глубина УГВ (м)
Район строительства
4
Слой 1 – глина
h1 = 1,9
г. Курган
dfn=2,0 м
ро = 1,5 кПа
Слой 2 – суглинок
h2 = 2,1
Слой 3 – песок
hгв = 3,0
Таблица 2
№ схемы
I, м
Н, м
h1, м
h2, м
n э ...
Статистическая
обработка результатов испытаний бетона на сжатие
При испытании на сжатие 24 бетонных образцов-кубов размерами 10310310 см получены следующие результаты, МПа:
№ опыта
1
2
3
4
5
6
7
8
9
10
11
12
Rсж (Rp),МПа
40,1
44,1
37,1
42,6
39,9
37,3
37,1
41
37,5
39,7
37,31
39,0
13
...
Системы обеспечения микроклимата как объекты
автоматизации
Поддержание в зданиях и сооружениях заданных параметров микроклимата обеспечивается комплексом инженерных систем теплогазоснабжения и кондиционирования микроклимата. Этим комплексом осуществляется выработка тепловой энергии, транспортирование горячей воды, пара и газа по тепловым и газовым сетям к зданиям и ...