Обобщенная функциональная схема системы стабилизации температуры газов на входе в горелку приведена на рис.
Рис. 6
На схеме приняты следующие обозначения: З – задатчик; БФзР – блок формирования закона регулирования; УМ – усилитель мощности; ИМ – исполнительный механизм; РУ – регулирующее устройство; РО – регулирующий орган; ОУ – объект управления; ДТ – датчик температуры.
РО, КД и ДТ образуют регулирования. Блоки БФзР, УМ, ИМ составляют регулирующее устройство. В соответствии с исходными данными для проектирования РУ должно быть ПИ-регулятором. ПИ-закон регулирования формируется блоком БФзР. Динамические свойства УМ соответствуют усилительному звену, благодаря чему усилитель мощности не вносит искажений в закон регулирования. Блок ИМ в динамическом отношении является интегрирующим звеном. Для исключения влияния исполнительного механизма на закон регулирования последовательно соединённые блоки УМ и ИМ следует охватить отрицательной обратной связью. Динамические свойства РО характеризуются усилительным звеном, ДТ – апериодическим звеном, а ОУ – апериодическим звеном запаздывания.
С учётом вышеизложенного структурная схема системы автоматизации, реализирующий ПИ-закон регулирования, имеет вид, показанный на рис.
Рис. 7 Структурная схема системы стабилизации температуры газов на входе в горелку
На схеме приняты следующие обозначения:
Wр(Р) = Кр – передаточная функция (ПФ) усилительного звена;
Wи(Р) = 1/рТи – ПФ интегрирующего звена БФзР;
Wум(Р) = Кум - ПФ усилителя мощности;
Wим(Р) = 1/рТим – ПФ исполнительного механизма;
Wро(Р) = Кро – ПФ регулирующего органа;
Wоу(Р) = Коу ∙ е –РТ/1+РТоу – ПФ печи; (1)
Wдт(Р) = Кдт /(1+рТдт) – ПФ датчика температуры;
Wос(Р) = Кос – ПФ звена обратной связи.
Используя принципы преобразования структурных схем, получим ПФ системы автоматизации в следующей последовательности.
Передаточная функция БФзР:
WБФзР (Р) = W(Р) [1+Wи (Р)]
ПФ регулирующего устройства:
Wру(Р) =WБФзР(Р) Wум(Р) Wим(Р) / [1+Wум(Р)Wим(Р)Wос(Р)
ПФ объекта:
ПФ системы автоматического регулирования:
Соотношение (2) является искомым аналитическим выражением ПФ системы автоматизации, укрупнённая структурная схема которой представлена на рис.
Укрупненная структурная схема ПФ системы автоматизации
Рис. 8
Проектирование фундамента мелкого
заложения на естественном основании. Определение глубины заложения подошвы фундамента (dФ,
м)
а) предварительная:
глубина заложения фундамента должна определяться с учётом:
- Назначения и конструктивных особенностей проектируемого сооружения;
- Величины и характера воздействия нагрузок, воздействия на основание;
- Инженерно-геологических условий площадки грунтов;
- Гидрогеологических условий пл ...
Построение ЛАЧХ объекта для статической системы
Асимптотическая ЛАЧХ звена второго порядка при d=1.0246 имеет два «излома» на частотах ω1=1/T1 = 0.33 с-1 , ω2=1/T2 = 0.5 с-1 .
Объект управления представляет собой последовательную цепочку типовых звеньев (два апериодических звена), поэтому можно представить, суммируя ЛАЧХ отдельных звеньев. Пр ...
Обоснование и характеристики принятого конструктивного решения
Фундамент.
В данном проекте используются несколько типов монолитного железобетонного фундамента, а также ленточный фундамент под переход, соединяющий цех ЖБК и административно-бытовой корпус. Ширина подошв монолитного фундамента определяется несущей способностью грунта и нагрузками от здания и кранов.
· Ф ...